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Abstract: Brancusi's Endless Column (Térgu-Jiu, Romania) is an interesting case study in bluff body aeroelasticity. It has been referred
o as aeroelastically indifferent owing to its remarkable aeroelastic stability. This stability has been attributed to its unconventional shape.
Calculations are presented which show that this strictly aerodynamic view of the column behavior is incomplete, and that the structural
dynamics charactenistics of the column have a powerful role in ensuring its aervelastic stability. The calculations show that the column’s
design, which provided for significant damping and mass, would assure its aeroelastic stability even if the column had a conventional and
aeroelastically less favorable shape, i.e., if it were a circular cylinder (a shape that is unfavorable from the point of view of vortex-induced
response) or a square cylinder (a shape that is unfavorable from the point of view of galloping).
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Introduction

Brancusi’s Endless Column (EC) (Fig. 1) is an interesting case
study in bluff body aeroelasticily. Because is has remarkably
aeroelastic stability it has been called “aeroelastically indifferent.”
The EC has been the subject of a number of landmark experimen-
tal studies that had as their motivation the characterization of its
seroelastic response (e.g., Lungu et al. 2002). The column’s
aeroelastic behavior has been attributed to its unconventional
shape. It is shown here that the column's structural design is at
least as important in assuring its aeroelastic stability with respect
to both vortex shedding and galloping. The design provided for
sufficiently large damping and mass, which would have assured
aeroelastic stability even if the column had a conventional and
acroelastically less favorable shape, e.g.. a circular or square
cylinder.

Cylindrical towers with a circular cross section exhibit vortex-
induced response. The Basu and Vickery procedure (1983a) (also
se¢ Chap. 10 of Simiu and Scanlan 1996) is applied to show that
such a cylindrical tower, with the same dimensions and mechani-
cal properties as the EC, has negligible vortex-induced response.,
in spite of its aerodynamically unfavorable shape.

Cylinders with circular cross section do not gallop (Simiu and
Scanlan 1996, p. 234). When examining galloping, a tower is
considered whose dimensions and mechanical properties are the
same as the EC, but whose cross section is square and hence more
unfavorable aeroelastically. Owing 1o its damping and mass, this
tower also has negligible galloping response.
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Vortex-Induced Vibration

The EC height is L=29.35 m. lis plane cross sections are square
with 0.45-0.90 m sides.

No procedures appear to have been developed for estimating
the vortex-induced response of towers with the shape of the EC or
for towers with square cross section in atmospheric flows, How-
ever, such a procedure has been developed by Basu and Vickery
(1983a.b) and Vickery and Basu (1983) for circular cylinders. The
mechanical properties of the circular column used in that proce-
dure are listed in Table 1. The critical wind speed for vortex-
induced vibration corresponding to the first normal mode of
vibration has the expression
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where 5=Strouhal number; D=diameter; and V;,  velocity at
which the Strouhal circular frequency for the ﬂtuli};ﬁﬁry colurnn.
w,=2w5Vy/ D=first natural circular frequency of the system w,.
Assuming S=0.20 (Simiu and Miyata 2006, p. 191}, the critical
wind speed corresponding to each diameter can be readily com-
puted from Eq. (1). The results are shown in the second column of
Table 2. The Reynolds number for each ""mk i%
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where [ is in m and Vy, .. 15 in m/s. The values of R so deter-
mined are also listed in Table 2,

The response depends on the RMS lift coefficient I"'_:n the
spanwise correlation parameter £, and the aeroelastic parameter
Ko (1) (see Basu and Vickery 1983a). These are functions of R
and are shown in Table 3. The procedure yields the RMS deflec-
tion o, (L) and the peak deflection ¥(L) (Table 4). The peak
factor g, that multiplies o, (L) to yield the peak response ¥, (L)
is independent of D and has the approximate value 4.0,

Tables 3 and 4 show that: (1) the critical velocity for vortex-
induced vibration. Vy, . is on the order of 1 m/s: and (2) the
peak deflections are negligible.



Fig. 1. (Color) Endless column by Constantin Brancusi, Targu-Jiu,
Romania. (Reprinted with permission of World Monuments Fund,
which oversaw restoration project of column.)

It is important to point out that the writer also investigated the
vortex-induced response in the second normal mode of vibration
using the procedure described above. For each value of the diam-
eter I considered, approximate calculations of the peak deflec-
tions at the top of the column of in the second mode of vibration
were based on: (1) the modal analysis of a uniform cantilever
(Meirovitch 1986, p. 163); and (2) the aerodynamic parameter
values (Basu and Vickery 1983a) corresponding to the Strouhal
number (and thus to the Reynolds number). The results indicate

Table 1. Mechanical and Dynamic Properties of EC Model

Parameter Symbaol Value
Damping ratio™" & 0.0175
Circular natural frequency™” ity 3.22 rad/s
Firsi normal mode W, (2) (z/ L)
Generalized mass"" M, 3661 kg
Reduced velocity® Ly Vol wy D

‘Subscript 1 indicates that the parameter corresponds o the first normal
mode.

"Values obtained through the courtesy of Dr. M. lancovici from Dr. R.
Wacareanu of the Technical University of Civil Engineering, Bucharest,
Romania.

Table 2. Critical Velocity for Vortex Induced Vibration and Cormrespond-
ing Reynolds Number as Function of Cylinder Diameter

D Vor,,..
(m) (m/s) R

0.45 1.15 347 = 107
0.675 1.72 7.78 % 100
0.90 2.30 1.39 % 10°

that for a given value of D, the peak response ¥,(L) in the second
mode of vibration is slightly less than its counterpan in the first
mode of vibration ¥',(L). This in spite of the fact that the critical
velocity for vortex shedding excitation Vo is larger than
Vo
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Galloping

In the previous section, the response of the EC 1o vortex excita-
tion was estimated by assuming, conservatively, aerodynamic
properties associated with a more unfavorable shape, the circular
cylinder. As was mentioned earlier, cylindrical shapes with circu-
lar cross section do not gallop, and a tower with the same dimen-
sions and mechanical properties as the EC, but with the shape of
a cylinder with square cross section, is considered. The suscepti-
bility of this shape to galloping is well established (Parkinson and
Smith 1964: Novak 1972). Even though, as can be inferred from
data available in Mukhopadhyay and Dugundji (1976) and Lungu
et al. (2002), this shape is aerodynamically more unfavorable than
the shape of the EC, it is shown here that owing to its relatively
large damping and mass, the tower would exhibit negligible gal-
loping response.

The model being considered then consists of a vertical canti-
levered beam of constant square cross section and variable mass
per unit length p(z). The galloping response of the cantilever
beam in the first mode of vibration can be estimated by solving
numerically a single degree-of-freedom equation of motion with
damping modeled by a seventh-degree polynomial term with odd
powers (Vio et al. 2004). The nonlinear terms are introduced
when the aerodynamic force is modeled using the quasi-steady
approximation for the transverse force. The quasi-steady theory is
generally considered to be valid as long as the critical velocity is
at least four times higher than the critical velocity at which voriex

Table 3. Acrodynamic and Aeroclastic Parameters

D

(m) C; C Koy (10
0.45 0.45 2.5 218
0.675 .45 2.5 218
(.90 045 2.5 1.21

*Values based on a roughness length z,=0.05 m. and a relative surface
roughness on the cylinder of k/D=1 % 107,

Table 4. RMS of Deflection o,y (L) and Peak Deflection ¥,(L)

n (L) YL
(m) {m) (m)
0.45 2.44% 10 976 % 10t
0.675 .04 ¢ 10} 4.16% 107}
0.90 2.90% 100 116X 10
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Table 5. Analysis Cases

Table 7. Critical Galloping Velocity Vin__ for Each Case

o Vo

Case number (m) {m/s) Flow type

[ .45 19-204 Smooth

1 0.45 19-210 Boundary laver
i 0.6TS 12-136 Smooth

v 0.675 | 3-140 Boundary layer
Vv (.90 9-102 Smooth

Vi 0.90 9-105 Boundary layer

resonance occurs (Parkinson and Smith 1964; Vio et al, 2004). As
is shown in Table 7 (see Table 2), this is true in the present case.
The profile of the incoming Now, V(z), is defined by either

Vo, smooth flow
Vizl= FALL 3
Vu[ E] . boundary layer flow &

Both profiles are considered in the analysis. The analysis cases
are sunmarized in Table 5.

The three different values of D represent the minimum
(0.45 m), the average (0.675 m), and the maximum (0,90 m) side
of the square horizontal cross sections of each of the 16 cast iron
maodules (the “beads”) of height 1.80 m that form the outermaost
part of the column.

The relevant mechanical and dynamic properties of the EC
model are listed in Table 1. Because the response is dominated by
the first mode of vibration, only that mode is considered in the
analysis. The mass per unit length with axial height w(z) is shown
n Table 6.

Using the data in Table 6, the value of the generalized mass
M, is obtained as follows

L
M = J- iz ()l

1]
036 ¢ 1\ 4 29.15 7 4
= ].Sl‘iJ‘ ("—) dz4 oo +4Hﬁf (—) dz (4)
[}] L 2K,y L

The expression for the eritical velocity for galloping oscillation in
the first mode is given by

4w, M
Vo = _E_I%_I (5)
Cr.¢ Iln<'1.|f.'|l
or, in terms of the reduced velocity **
4LM
Uy =—L (6)

T pDA I€1,
where p~1.25 kgim®, A,=2.69, and ¢y, is defined by Eq. (7)

Table 6. Distribution of Mass

Range iz
m) (kg/m)
D=:=056 1.525
056<:=5350 1,261
< z=036 1,005
936<::=2042 752
M42<z=2890 608.5
2890 = -=2015% 486
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I".||:|.,”_-
Case number {ms)
I b A
i 95.6
11 LR
v 63.7
v 46.5
¥l 47.8
[z}
€. =— Viz (l) iz (7
v=ve). vel; )

For each analysis case, the range of Uy was specified as
02Uy =U,= 22Uy, . Since Ugi, s a function of both D
and -*:","r see Eq. (6)]. mE“EumsPnMiﬁE range of the mean wind
speed Vy is in each case different. These differences are shown in
the third column of Table 5. Table 7 lists the critical onset velocity
for galloping for each case considered,

Figs. 2(a—c) show the maximum transverse displacement at the
beam tip v, (L) for each case as a function of Vi It is apparent that
the effect of the shear flow is o retard the onset velocity of
galloping, albeit only slightly in this case. This is consistent with
the experimental observations recorded in Novak (1972),

It is clear from the figures that the cantilevered square section
model of the EC is not susceptible to galloping for any of the
cases considered if the mean velocity at the top of the building is
less than about 47 m/s, or about 47(10/29.35)" "=49.3 m/s a
10 m above ground in open terrain. (The latter value corresponds
o a s gust speed of about 74.9 m/ 5.) It is unlikely that such
speeds would occur in Tirgu-Jiu, Romania, the site of the actual
Endless Column.

The galloping velocity for the square column in the most un-
favorable case (D=0.90 m) is large owing to the relatively high
damping (1.75% ) and generalized mass in the fundamental mode
of vibration (M,=3,661 kg). The coefficients in the expression
for the aerodynamic galloping excitation correspond to simooth
flow. Their use for the modeling of galloping under turbulent flow
is conservative (Novak 1972). that is, it yields onset galloping
velocities somewhat smaller than those that would actually occur
in rbulent flow,

Conclusions

The aim of this paper is to elaborate on an aspect of the aeroelas-
tic behavior of the Brancusi EC that has not been given much
atiention in previous engineering studies. It has been pointed oul
in the literature that the EC js characterized by aerodynamic pit-
rameters resulting in favorable aeroelastic behavior, It was shown
in the paper that the column’s Favorable deroelastic behavior s
assured, in addition, by the large values of its structural d ynamics
parameters—the damping and the mass—provided for by Bran-
cusi's structural engineer, Stefan Gturgescu"(}mjan. Had the col-
umn consisted of a circular or square cylinder, its aeroelastic
behavior would have been excellent gs well.

Acknowledgments

The writer performed this work during his tenure as an NIST
NRC Postdoctoral Research Associate. The advice of his advisor,
Dr. Emil Simiu, is gratefully acknowledged.



(a)

10

T

15
10

Ymaxs) (M)

0 20

sl
=

()

0 10 20 30

80 100 120 140 160
e
L i o
B0 80 100 120
=
40 50 Bl 70 80 90
¥, (m/s)

Fig. 2. (Color) Galloping response for: (a) D=45 cm (Cases 1 and IT); (b) D=67.5 ¢m (Cases 111 and IV} and (c) D=90 ¢m (Cases V and VT,
In all cases. (=) represents smooth flow and (+) represents boundary laver flow.
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